Auxiliary Variables in Conditional Gaus Speech Recogni
نویسندگان
چکیده
In previous work, we presented a case study using an estimated pitch value as the conditioning variable in conditional Gaussians that showed the utility of hiding the pitch values in certain situations or in modeling it independently of the hidden state in others. Since only single conditional Gaussians were used in that work, we extend that work here to using conditional Gaussian mixtures in the emission distributions to make this work more comparable to state-of-the-art automatic speech recognition. We also introduce a rate-of-speech (ROS) variable within the conditional Gaussian mixtures. We find that, under the current methods, using observed pitch or ROS in the recognition phase does not provide improvement. However, systems trained on pitch or ROS may provide improvement in the recognition phase over the baseline when the pitch or ROS is marginalized out.
منابع مشابه
Auxiliary variables in conditional Gaussian mixtures for automatic speech recognition
In previous work, we presented a case study using an estimated pitch value as the conditioning variable in conditional Gaussians that showed the utility of hiding the pitch values in certain situations or in modeling it independently of the hidden state in others. Since only single conditional Gaussians were used in that work, we extend that work here to using conditional Gaussian mixtures in t...
متن کاملSemiparametric Efficiency in GMM Models with Auxiliary Data
We study semiparametric efficiency bounds and efficient estimation of parameters defined through general moment restrictions with missing data. Identification relies on auxiliary data containing information about the distribution of the missing variables conditional on proxy variables that are observed in both the primary and the auxiliary database, when such distribution is common to the two d...
متن کاملSemiparametric Efficiency in Gmm Models with Auxiliary Data By
We study semiparametric efficiency bounds and efficient estimation of parameters defined through general moment restrictions with missing data. Identification relies on auxiliary data containing information about the distribution of the missing variables conditional on proxy variables that are observed in both the primary and the auxiliary database, when such distribution is common to the two d...
متن کاملRepresenting Aggregators in Relational Probabilistic Models
We consider the problem of, given a probabilistic model on a set of random variables, how to add a new variable that depends on the other variables, without changing the original distribution. In particular, we consider relational models (such as Markov logic networks (MLNs)), where we cannot directly define conditional probabilities. In relational models, there may be an unbounded number of pa...
متن کاملSEMIPARAMETRIC EFFICIENCY IN GMM MODELS WITH AUXILIARY DATA By Xiaohong Chen,1 Han Hong2 and Alessandro Tarozzi
We study semiparametric efficiency bounds and efficient estimation of parameters defined through general moment restrictions with missing data. Identification relies on auxiliary data containing information about the distribution of the missing variables conditional on proxy variables that are observed in both the primary and the auxiliary database, when such distribution is common to the two d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002